Comparative Analysis of Raw Images and Meta Feature based Urdu OCR using CNN and LSTM
نویسندگان
چکیده
Urdu language uses cursive script which results in connected characters constituting ligatures. For identifying characters within ligatures of different scales (font sizes), Convolution Neural Network (CNN) and Long Short Term Memory (LSTM) Network are used. Both network models are trained on formerly extracted ligature thickness graphs, from which models extract Meta features. These thickness graphs provide consistent information across different font sizes. LSTM and CNN are also trained on raw images to compare performance on both forms of inputs. For this research, two corpora, i.e. Urdu Printed Text Images (UPTI) and Centre for Language Engineering (CLE) Text Images are used. Overall performance of networks ranges between 90% and 99.8%. Average accuracy on Meta features is 98.08% while using raw images, 97.07% average accuracy is achieved. Keywords—Long Short Term Memory (LSTM); Convolution Neural Network (CNN); OCR; scale invariance; deep learning; ligature
منابع مشابه
EMG-based wrist gesture recognition using a convolutional neural network
Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...
متن کاملUnconstrained OCR for Urdu using Deep CNN-RNN Hybrid Networks
Building robust text recognition systems for languages with cursive scripts like Urdu has always been challenging. Intricacies of the script and the absence of ample annotated data further act as adversaries to this task. We demonstrate the effectiveness of an end-to-end trainable hybrid CNN-RNN architecture in recognizing Urdu text from printed documents, typically known as Urdu OCR. The solut...
متن کاملScript Identification in Natural Scene Image and Video Frame using Attention based Convolutional-LSTM Network
Script identification plays a significant role in analysing documents and videos. In this paper, we focus on the problem of script identification in scene text images and video scripts. Because of low image quality, complex background and similar layout of characters shared by some scripts like Greek, Latin, etc., text recognition in those cases become challenging. Most of the recent approaches...
متن کاملCombining pattern recognition and deep-learning-based algorithms to automatically detect commercial quadcopters using audio signals (Research Article)
Commercial quadcopters with many private, commercial, and public sector applications are a rapidly advancing technology. Currently, there is no guarantee to facilitate the safe operation of these devices in the community. Three different automatic commercial quadcopters identification methods are presented in this paper. Among these three techniques, two are based on deep neural networks in whi...
متن کاملDeep LSTM based Feature Mapping for Query Classification
Traditional convolutional neural network (CNN) based query classification uses linear feature mapping in its convolution operation. The recurrent neural network (RNN), differs from a CNN in representing word sequence with their ordering information kept explicitly. We propose using a deep long-short-term-memory (DLSTM) based feature mapping to learn feature representation for CNN. The DLSTM, wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018